Tesca Technologies Pvt. Ltd.

Basic Digital Electronics

Rules pf Digital Logic

$A B C=(A B) C=A(B C), A+B+C=(A+B)+C=A+(B+C) A N D, O R$, are associative
$A B=B A, A+B=B+A$--------------------------------AND and OR operations are commutative.
$A+B C=(A+B)(A+C), A(B+C)=A B . A C---------------$ Forms of the distributive property
A+B = AB -- form of De-Morgan's Theorem
AB=A+B---a form of De-Morgan's Theorem
$A A=A, A+A,=A, A+A=1, A A=0, A=A-\cdots-----------$ - Single Variable Theorems.
$A+A B=A, A+A B=A+B------------------------------M o r e ~ t w o-v a r i a b l e ~ T h e o r e m s$.
$A 1=A, A+1=1, A+0=A, A 0=0,1=0,0=1----------$-Identity and Null operations.

1.	Null	0
2.	AND	AB
3	A AND NOT B	AB
4.	NOT A AND B	AB
5.	Exclusive OR	$A B+A B$
6.	OR	A+B
7.	NOT OR	A+B
8.	Exclusive NOR	$A B+A B$
9.	Not B	B
10.	A OR NOT B	A + B
11.	not A	A
12.	NOT A OR B	A + B
13.	NOT A AND B	AB

IC Series Designation

A NAND gate is equivalent to an inversion followed by an OR

A NOR gate is equivalent to an inversion followed by an AND

| | IC Series | | |
| :--- | :---: | :---: | :---: | :---: |

