12 tesca

Tesca Technologies Pvt. Ltd.

555 Timer

555 Timer Overview
555 timer IC was first introduced in 1971 by the Signetics Corporation.

Pin No.	Function	Name
1.	Ground (0V)	Ground
2.	Voltage Below $1 / 3$ Vcctrigger the pulse	rrigger
3.	Pulsating output	Output
4.	Active low, interrupt the timing interval at output	Reset
5.	Provide access to the internal voltage divider default $2 / 3 \mathrm{Vcc}$	Control Voltage
6.	The pulse ends when the voltage is greater than control	Threshold
7.	Open collector output, to discharge the capacitor	Jischarge
8.	Supply voltage $5 \mathrm{~V}(4.5 \mathrm{~V}-16 \mathrm{~V})$	vcc

Internal Diagram

Physical Appearance

Monostable Mode

Also called as one shot multivibrator. It is a pulse generator circuit in which the duration of the pulse is determined by the R-C network. One tate of outpur
Pin 1 is grounded. Trigger input is applied to pin 2. In quiescent
condition of output this input is kept at +Vcc to obtain transition of condition of output this input is kept at +Vcc to obtain transition of
output from stable state to quasi-stable state, a negative going pulse output from stable state to quasi-stable state, a negative going pulse
of narrow width and amplitude of greater than $+2 / 3 \mathrm{VCc}$ is applied to in 2. Output is taken from pin 3 . Pin 4 is usually connected to +Vcc to

Monostable Operation
The timing period is triggered (started) when the trigger input (555 pin 2) is less than $1 / 3 \mathrm{~V}$, this makes the output high (+Vs) and the
capacitor C 1 starts to charge through resistor R 1 . Once the time period has started further trigger pulses are ignored.
The threshold input (555 pin 6) monitors the voltage across C 1 and when this reaches $2 / 3$ Vs the time period is over and the output ecoses low. At the same tome discharge (555 pin 7) is conneted
V , discharging the capacitor ready for the next trigger. V , discharging the capacitor ready for the next trigger.
he capacitor C has to charge through resistance RA. The larger the time constant RAC, the longer it takes for the capacitor voltage to reach $+2 / 3 \mathrm{~V}_{\text {cc }}$.
The time during which the timer output remains high is given as TP = .0986R C. Where R_{A} is in ohms and C is in farads. The above relation is
derived as below. Voltage across the capacitor at any instant during derived as below. Voltage across the capacitor at any instant during Substituting $\mathrm{VC}=2 / 3 \mathrm{~V}_{\mathrm{cc}}$ in above equation we get the time taken by the capacitor to charge from 0 to $+2 / 3 \mathrm{~V}_{\mathrm{cc}}$.
So, $+2 / 3 V_{c c}=V_{c}=V_{c c}\left(1-e^{-t / R R_{A} C}\right)$ ort $-R_{A} C \log _{e} 3=1.0986 R_{A} C$
So, $+2 / 3 V_{c c}=V_{c}=V_{c c}\left(1-e^{-t / R A C}\right)$ ort- $R_{A} C$
So, pulse width, $t_{p}=1.0986 R_{A} C \approx 1.1 R_{A} C$

Astable Mode

An astable circuit produces a 'square wave' the circuit will keep retriggering itself, resulting in a pulse train.

With the output high $\left(+V_{s}\right)$ the capacitor C_{1} is charged by current flowing through R_{1} and R_{2}. The threshold and trigger inputs monitor the
capacitor voltage and when it reaches $2 / 3 V_{5}$ (threshold voltage) the capacitor voltage and when it reaches $2 / 3 V_{\mathrm{s}}$ (threshold voltage) the
output becomes low and discharges with current flowing through R2 into the edischarge pin. When the voltage falls to $1 / 3 \mathrm{~V}_{\mathrm{s}}$ (trigger voltage) the output becomes high again and the discharge pin is disconnected,
allowing the capacitor to start charging again. This cycle repeats allowing the capacitor to start charging again. This cycle repeats
continuously unless the reset input is connected to OV which forces the output low while reset is OV .

The Design Formula for the frequency
The period t , of the pulse is given by:
HIGH time $=0.69\left(R_{1}+R_{2}\right) \times C$ sedy calculated from. The duty cycle of the waveform, usually
expressed as a percentage, is given by: duty cycle $=\frac{\text { HIGH time }}{\text { pulse period time }}$ An alternative measurement of HIGH and ${ }_{\text {mark space ratio }=}$ HIGH time LOW times is the mark space rating
eefore calculating a frequency, you should know that it is usual to mark $\mathrm{R}_{1}=1 \mathrm{~K} \Omega$ because this helps to give the output pulses a duty cycle close o 50%, that is, the HIGH and LOW times of the pulses are approximately equal.

Discrete 36185

Mono-Stable Multivibrator

Bistable Mode

Also called as Schmitt Trigger, has two stable states, HIGH and LOW.

Two resistors R , and R , are connected between Vcc and the Trigger and Reset inputs. These resistors hold the Trigger and Reset input high until pushing either the Trigger or Reset push button grounds one or the other of these inputs.

LED On when pin ${ }^{3}$
is LOW (Sinking)

Both LED's flash $\xi_{R}^{\text {alternatively }}$ LED ON when
output LOW

LED ON when
output HIGH R output HIGH

38643
Universal Shift Register

